

中华人民共和国国家环境保护标准

HJ 1147-2020

水质 pH 值的测定 电极法

Water quality—Determination of pH—Electrode method

(发布稿)

本电子版为发布稿。请以中国环境出版集团出版的正式标准文本为准。

2020-11-26 发布

2021-06-01 实施

生 态 环 境 部 发布

目 次

前	言	ii
1	适用范围	1
2	规范性引用文件	1
3	方法原理	1
4	干扰和消除	1
5	试剂和材料	1
6	仪器和设备	2
7	样品	2
8	分析步骤	3
9	结果表示	4
10	精密度和准确度	4
11	质量保证和质量控制	4
12	废物处理	4
13	注意事项	5
附	录 A (资料性附录) 标准缓冲溶液	6
附	录 B(资料性附录) 常见的温度补偿方式	9

前 言

为贯彻《中华人民共和国环境保护法》和《中华人民共和国水污染防治法》,保护生态环境,保障人体健康,规范水中 pH 值的测定方法,制定本标准。

本标准规定了测定地表水、地下水、生活污水和工业废水中 pH 值的电极法。

本标准与《水质 pH 值的测定 玻璃电极法》(GB 6920-86)相比,主要差异如下:

- ——名称修改为《水质 pH 值的测定 电极法》;
- ——修改了方法适用范围、方法原理以及样品保存条件;
- ——删除了定义部分;
- ——完善了标准缓冲溶液和实验用水的要求;
- ——细化了校准、样品测定和结果表示等内容;
- ——增加了样品的采集、质量保证和质量控制以及注意事项等条款。

自本标准实施之日起,原国家环境保护局 1986 年 10 月 10 日批准发布的《水质 pH 值的测定 玻璃电极法》(GB 6920-86)在相应的环境质量标准和污染物排放(控制)标准实施中停止执行。

本标准的附录 A 和附录 B 为资料性附录。

本标准由生态环境部生态环境监测司、法规与标准司组织制订。

本标准起草单位:天津市生态环境监测中心。

本标准验证单位:中国环境监测总站、国家环境分析测试中心、北京市生态环境监测中心、辽宁省大连生态环境监测中心、湖南省生态环境监测中心和四川省生态环境监测总站。

本标准生态环境部 2020年11月26日批准。

本标准自 2021 年 6 月 1 日起实施。

本标准由生态环境部解释。

水质 pH 值的测定 电极法

1 适用范围

本标准规定了测定水中 pH 值的电极法。

本标准适用于地表水、地下水、生活污水和工业废水中 pH 值的测定。

测定范围为0~14。

2 规范性引用文件

本标准引用了下列文件或其中的条款。凡是不注日期的引用文件,其有效版本适用于本标准。

GB/T 27501 pH 值测定用缓冲溶液制备方法

HJ 91.1 污水监测技术规范

HJ/T 91 地表水和污水监测技术规范

HJ/T 164 地下水环境监测技术规范

3 方法原理

pH 值由测量电池的电动势而得。该电池通常由参比电极和氢离子指示电极组成。溶液每变化 1 个 pH 单位,在同一温度下电位差的改变是常数,据此在仪器上直接以 pH 的读数表示。

4 干扰和消除

- 4.1 水的颜色、浊度、胶体物质、氧化剂及还原剂均不干扰测定。
- 4.2 在 pH 值小于 1 的强酸性溶液中,会产生酸误差;在 pH 值大于 10 的强碱性溶液中,会产生钠差。可采用耐酸碱 pH 电极测定,也可以选择与被测溶液的 pH 值相近的标准缓冲溶液对仪器进行校准以抵消干扰。
- 4.3 测定电解质低的样品时,应采用适用于低离子强度的 pH 电极测定;测定电解质高(盐度大于5%)的样品时,应采用适用于高离子强度的 pH 电极测定。
- 4.4 测定含高浓度氟的酸性样品时,应采用耐氢氟酸 pH 电极测定。
- 4.5 温度影响电极的电位和水的电离平衡,仪器应具备温度补偿功能,温度补偿范围依据 仪器说明书。

5 试剂和材料

除非另有说明,分析时均使用符合国家标准的分析纯试剂。

- 5.1 实验用水:新制备的去除二氧化碳的蒸馏水。 将水注入烧杯中,煮沸 10 min,加盖放置冷却。临用现制。
- 5.2 邻苯二甲酸氢钾(C₈H₅KO₄)。于 110℃~120℃下干燥 2 h, 置于干燥器中保存, 待用。
- 5.3 无水磷酸氢二钠 (Na₂HPO₄)。于 110℃~120℃下干燥 2 h,置于干燥器中保存,待用。
- 5.4 磷酸二氢钾(KH₂PO₄)。于 110℃~120℃下干燥 2 h, 置于干燥器中保存, 待用。
- 5.5 四硼酸钠 (Na₂B₄O₇·10H₂O)。

与饱和溴化钠(或氯化钠加蔗糖)溶液(室温)共同放置于干燥器中 48 h,使四硼酸钠晶体保持稳定。

- 5.6 标准缓冲溶液。
- 5. 6. 1 标准缓冲溶液 I: *c* (C₈H₅KO₄) =0.05 mol/L, pH=4.00 (25℃)。

称取 10.12 g 邻苯二甲酸氢钾 (5.2),溶于水 (5.1)中,转移至 1 L 容量瓶中并定容至标线。也可购买市售合格标准缓冲溶液,按照说明书使用。

5. 6. 2 标准缓冲溶液 II: c(Na₂HPO₄)=0.025 mol/L,c(KH₂PO₄)=0.025 mol/L,pH=6.86(25℃)。

分别称取 3.53 g 无水磷酸氢二钠 (5.3) 和 3.39 g 磷酸二氢钾 (5.4),溶于水 (5.1) 中,转移至 1 L 容量瓶中并定容至标线。也可购买市售合格标准缓冲溶液,按照说明书使用。

5. 6. 3 标准缓冲溶液Ⅲ: *c* (Na₂B₄O₇) =0.01 mol/L, pH=9.18 (25℃)。

称取 3.80 g 四硼酸钠 (5.5),溶于水 (5.1)中,转移至 1 L 容量瓶中并定容至标线,在聚乙烯瓶中密封保存。也可购买市售合格标准缓冲溶液,按照说明书使用。

注1: 上述 pH 标准缓冲溶液于 4℃以下冷藏可保存 2~3 个月。发现有混浊、发霉或沉淀等现象时, 不能继续使用。

注 2: 当被测样品 pH 值过高或过低时,可选用与其 pH 值相近的其他标准缓冲溶液,具体参见附录 A。 5. 7 pH 广泛试纸。

6 仪器和设备

- 6.1 采样瓶:聚乙烯瓶。
- 6.2 酸度计:精度为 0.01 个 pH 单位,具有温度补偿功能,pH 值测定范围为 $0\sim14$ 。
- 6.3 电极:分体式 pH 电极或复合 pH 电极。
- 6.4 温度计: 0℃~100℃。
- 6.5 烧杯:聚乙烯或硬质玻璃材质。
- 6.6 一般实验室常用仪器和设备。

7 样品

按照 HJ 91.1、HJ/T 91 和 HJ/T 164 的相关规定采集样品,现场测定;或采集样品于采样

瓶(6.1)中,样品充满容器立即密封,2h内完成测定。

8 分析步骤

8.1 测定前准备

按照使用说明书对电极(6.3)进行活化和维护,确认仪器正常工作。现场测定应了解现场环境条件以及样品的来源和性质,初步判断是否存在强酸碱、高电解质、低电解质、高氟化物等干扰,并进行相应的准备。

8.2 仪器校准

8.2.1 校准溶液

使用 pH 广泛试纸(5.7)粗测样品的 pH 值,根据样品的 pH 值大小选择两种合适的校准用标准缓冲溶液(5.6)。两种标准缓冲溶液 pH 值相差约 3 个 pH 单位。样品 pH 值尽量在两种标准缓冲溶液 pH 值范围之间,若超出范围,样品 pH 值至少与其中一个标准缓冲溶液 pH 值之差不超过 2 个 pH 单位。

8.2.2 温度补偿

手动温度补偿的仪器,将标准缓冲溶液的温度调节至与样品的实际温度相一致,用温度计(6.4)测量并记录温度。校准时,将酸度计(6.2)的温度补偿旋钮调至该温度上。带有自动温度补偿功能的仪器,无须将标准缓冲溶液与样品保持同一温度,按照仪器说明书进行操作。常见的温度补偿方式参见附录 B。

注: 现场测定时必须使用带有自动温度补偿功能的仪器。

8.2.3 校准方法

采用两点校准法,按照仪器说明书选择校准模式,先用中性(或弱酸、弱碱)标准缓冲溶液,再用酸性或碱性标准缓冲溶液校准。不同温度下各种标准缓冲溶液的 pH 值参见附表 A.2。

- a)将电极(6.3)浸入第一个标准缓冲溶液,缓慢水平搅拌,避免产生气泡,待读数稳定后,调节仪器示值与标准缓冲溶液的 pH 值一致。
- b) 用蒸馏水冲洗电极 (6.3) 并用滤纸边缘吸去电极表面水分,将电极 (6.3) 浸入第二个标准缓冲溶液中,缓慢水平搅拌,避免产生气泡,待读数稳定后,调节仪器示值与标准缓冲溶液的 pH 值一致。
- c) 重复 a) 操作, 待读数稳定后, 仪器的示值与标准缓冲溶液的 pH 值之差应≤0.05 个 pH 单位, 否则重复步骤 a) 和 b), 直至合格。
- **注 1**: 亦可采用多点校准法,按照仪器说明书操作,在测定实际样品时,需采用 pH 值相近(不得大于 3 个 pH 单位)的有证标准样品或标准物质核查。
- 注 2: 酸度计 1 min 内读数变化小于 0.05 个 pH 单位即可视为读数稳定。

8.3 样品测定

用蒸馏水冲洗电极并用滤纸边缘吸去电极表面水分,现场测定时根据使用的仪器取适量样品或直接测定;实验室测定时将样品沿杯壁倒入烧杯(6.5)中,立即将电极浸入样品中,缓慢水平搅拌,避免产生气泡。待读数稳定后记下pH值。具有自动读数功能的仪器可直接读取数据。每个样品测定后用蒸馏水冲洗电极。

9 结果表示

测定结果保留小数点后 1 位,并注明样品测定时的温度。当测量结果超出测量范围 (0~14)时,以"强酸,超出测量范围"或"强碱,超出测量范围"报出。

10 精密度和准确度

10.1 精密度

六家实验室对 pH 值分别为 8.2、7.5、8.3、8.6、2.1 和 10.2 的饮用水源水、景观地表水、地下水、生活污水和两种工业废水的统一样品进行 6 次重复测定:实验室内极差均为 0.1;实验室间极差范围为 $0.1\sim0.2$ 。

10.2 准确度

六家实验室对 pH 值分别为 4.13 ± 0.04 、 7.33 ± 0.06 和 9.09 ± 0.07 的 3 种统一有证标准样品进行了 6 次重复测定:误差范围分别为- $0.04\sim0.02$ 、- $0.05\sim0.04$ 和- $0.05\sim0$;误差最终值分别为- 0.02 ± 0.06 、- 0.03 ± 0.08 和- 0.04 ± 0.04 。

11 质量保证和质量控制

- 11.1 每批样品测定前应对仪器进行校准,当样品 pH 值变化较大或监测场地变化时均应重新校准。
- 11.2 每连续测定 20 个样品或每批次 (≤20 个样品/批) 应分析 1 个有证标准样品或标准物质,测定结果应在保证值范围内,否则应重新校准,重新测定该批次样品。
- 11. 3 每 20 个样品或每批次(\leq 20 个样品/批)应分析 1 个平行样。当 pH 值在 6~9 之间时,允许差为±0.1 个 pH 单位;当 pH 值 \leq 6 或 pH 值 \geq 9 时,允许差为±0.2 个 pH 单位。测定结果取第一次测定值。

12 废物处理

实验过程中产生的废物应分类收集,妥善保管、依法委托有资质的单位进行处理。

13 注意事项

- 13.1 酸度计(6.2)应参照仪器说明书使用和维护。
- 13.2 电极 (6.3) 应参照说明书使用和维护。
- **13.3** 为减少空气中酸碱性气体的溶入,或样品中相应物质的挥发,测定前不应提前打开采 样瓶 (6.1)。
- 13.4 测定 pH 值大于 10 的强碱性样品时,应使用聚乙烯烧杯 (6.5)。
- 13.5 使用过的标准缓冲溶液不允许再倒回原瓶中。
- 13.6 如有特殊需求时,可根据需要及仪器的精度确定结果的有效数字位数。
- 13.7 如选用更高精度的仪器设备,需使用更高精度的标准缓冲溶液,标准缓冲溶液配制的精确度应满足仪器的要求,具体参见附录 A。

附录 A (资料性附录) 标准缓冲溶液

A. 1 标准缓冲溶液的组成

标准缓冲溶液有6种,其组成和配制1L溶液所需的标准物质的质量列于表A.1。

标准缓冲 标准物质 25℃下标准缓 标准缓冲溶液 配制 1 L 标准缓冲溶液 分子式 溶液编号 名称 冲溶液的 pH 值 浓度 (mol/L) 所需标准物质的质量(g) B1 四草酸钾 $KH_3(C_2O_4)_2 \cdot 2H_2O$ 1.680 0.05 12.61 В3 酒石酸氢钾 KHC₄H₄O₆ 3.559 25℃饱和 >7 邻苯二甲酸 В4 KHC₈H₄O₄ 4.003 0.05 10.12 氢钾 0.025 磷酸氢二钠 Na₂HPO₄ 3.533 B6 6.864 磷酸二氢钾 KH₂PO₄ 0.025 3.387 四硼酸钠 0.01 В9 $Na_2B_4O_7 \cdot 10H_2O$ 9.182 3.80

12.460

25℃饱和

>2

表 A. 1 标准缓冲溶液的组成

A. 2 标准缓冲溶液的配制及保存

氢氧化钙

B12

A. 2. 1 实验用水:新制备的去除二氧化碳的蒸馏水。 将水注入烧瓶中,煮沸 10 min,加盖放置冷却。临用现制。

Ca(OH)₂

- A. 2. 2 四草酸钾 (KH₃C₄O₈·2H₂O)。
 于 51℃~57℃下干燥 4 h, 置于干燥器中保存, 待用。
- A. 2. 3 酒石酸氢钾 (KH₅C₄O₆)。
- A. 2. 4 邻苯二甲酸氢钾 (C₈H₅KO₄)。
 于 110℃~120℃下干燥 2 h, 置于干燥器中保存, 待用。
- A. 2. 5 无水磷酸氢二钠 (Na₂HPO₄)。于 110℃~120℃下干燥 2 h, 置于干燥器中保存, 待用。
- A. 2. 6 磷酸二氢钾 (KH₂PO₄)。 于 110℃~120℃下干燥 2 h,置于干燥器中保存,待用。
- 与饱和溴化钠(或氯化钠加蔗糖)溶液(室温)共同放置在干燥器中 48 h,使四硼酸钠

晶体保持稳定。

- A. 2. 8 氢氧化钙[Ca(OH)₂]。
- A. 2. 9 标准缓冲溶液 B1: c (KH₃C₄O₈·2H₂O) =0.05 mol/L,pH=1.680(25°C)。

称取 12.61 g 四草酸钾(A.2.2), 溶于水(A.2.1)中,于 25℃下转移至 1 L 容量瓶中并 定容至标线。也可购买市售合格标准缓冲溶液,按照说明书使用。

A. 2. 10 标准缓冲溶液 B3: KH₅C₄O₆饱和溶液, pH=3.559(25℃)。

称取约 7 g 酒石酸氢钾 (A.2.3),溶于水 (A.2.1)中,于 22℃~28℃下在磨口玻璃瓶中稀释至 1 L,剧烈摇动 20 min~30 min,待溶液澄清后,用倾泻法取清液备用。也可购买市售合格标准缓冲溶液,按照说明书使用。

A. 2. 11 标准缓冲溶液 B4: c(C₈H₅KO₄)=0.05 mol/L,pH=4.003(25℃)。

称取 10.12 g 邻苯二甲酸氢钾 (A.2.4),溶于水 (A.2.1)中,于 25℃下转移至 1 L 容量 瓶中并定容至标线。也可购买市售合格标准缓冲溶液,按照说明书使用。

A. 2. 12 标准缓冲溶液 B6: c (Na₂HPO₄) =0.025 mol/L, c (KH₂PO₄) =0.025 mol/L, pH=6.864 (25℃)。

分别称取 3.533 g 无水磷酸氢二钠(A.2.5)和 3.387 g 磷酸二氢钾(A.2.6),溶于水(A.2.1)中,于 25℃下转移至 1 L 容量瓶中并定容至标线。也可购买市售合格标准缓冲溶液,按照说明书使用。

A. 2. 13 标准缓冲溶液 B9: c(Na₂B₄O₇)=0.01 mol/L,pH=9.182(25℃)。

称取 3.80 g 四硼酸钠 (A.2.7),溶于水 (A.2.1)中,于 25℃下转移至 1 L 容量瓶中并定容至标线,在聚乙烯瓶中密封保存。也可购买市售合格标准缓冲溶液,按照说明书使用。

A. 2. 14 标准缓冲溶液 B12: Ca(OH)₂饱和溶液, pH=12.460(25℃)。

称取约 2 g 氢氧化钙 (A.2.8),溶于水 (A.2.1)中,于 22℃~28℃下在聚乙烯瓶中稀释至 1 L,剧烈摇动 20 min~30 min,待溶液澄清后,用倾泻法取清液备用。也可购买市售合格标准缓冲溶液,按照说明书使用。

注 1: B9, B12 均为碱性溶液,应于聚乙烯瓶中密封保存。为了防止 B3 溶液发霉,可加入百里酚,用量为每升溶液加 1 g。标准缓冲溶液于 4℃以下冷藏可保存 2~3 个月。发现有混浊、发霉或沉淀等现象时,不能继续使用。

注 2:以上标准缓冲溶液的配制及标准值参考 GB/T 27501-2011。也可购买其它市售合格标准缓冲溶液。

A. 3 6 种标准缓冲溶液的 pH 值

不同温度下各标准缓冲溶液对应的 pH 值列于表 A.2。根据测量需要及仪器的精度确定试剂的纯度和称量的精确度,基准试剂制备的溶液不确定度为 0.005 个 pH 单位(k=3),其他试剂制备的溶液不确定度为 0.01 个 pH 单位(k=3)。

表 A. 2 不同温度下各标准缓冲溶液对应的 pH 值

温度(℃)	B1	В3	B4	В6	В9	B12
0	1.668	_	4.006	6.981	9.458	13.416
5	1.669	_	3.999	6.949	9.391	13.210
10	1.671	_	3.996	6.921	9.330	13.011
15	1.673	_	3.996	6.898	9.276	12.820
20	1.676	_	3.998	6.879	9.226	12.637
25	1.680	3.559	4.003	6.864	9.182	12.460
30	1.684	3.551	4.010	6.852	9.142	12.292
35	1.688	3.547	4.019	6.844	9.105	12.130
40	1.694	3.547	4.029	6.838	9.072	11.975
45	1.700	3.550	4.042	6.834	9.042	11.828
50	1.706	3.555	4.055	6.833	9.015	11.697
55	1.713	3.563	4.070	6.834	8.990	11.553
60	1.721	3.573	4.087	6.837	8.968	11.426
70	1.739	3.596	4.122	6.847	8.926	_
80	1.759	3.622	4.161	6.862	8.890	_
90	1.782	3.648	4.203	6.881	8.856	_
95	1.795	3.660	4.224	6.891	8.839	_

附录 B

(资料性附录)

常见的温度补偿方式

酸度计常见的温度补偿方式有两种:手动温度补偿(MTC模式)和自动温度补偿(ATC模式)。

手动温度补偿 (MTC 模式): 首先将标准缓冲溶液的温度调节至与样品的实际温度相一致,用温度计测量并记录温度。校准时,将酸度计(7.2)的温度补偿旋钮或按键设定至样品实际温度上,标准缓冲溶液的 pH 值设定为样品实际温度下的 pH 值(参见表 A.2)。样品测定结果(仪器示值)为样品实际温度下的 pH 值。

自动温度补偿(ATC 模式): 无须将标准缓冲溶液与样品调节至同一温度。校准时,电极自带的温度探头可自动测量标准缓冲溶液的温度,标准缓冲溶液的 pH 值自动设定为该温度下的 pH 值(参见表 A.2)。测定样品时,自动测量样品实际温度并对电极斜率进行补偿,测定结果(仪器示值)为样品实际温度下的 pH 值。

9